
ANANDALAYA PERIODIC TEST -2 Class : XI

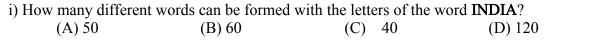
Subject: Mathematics Date : 23-09-2022

		115						
	General Instructions: . This question paper contains two parts A and B. Each part is compulsory. Part A carries 24 marks and							
	Part B carries 56 marks.							
2	2. Part-A has Objective Type Questions and Part -B has Descriptive Type Questions							
	B. Both Part A and Part B have choices.							
	Part – A:							
	1. It consists of two sections- I and II. 2. Section Leomarized of 16 years short engine type questions							
	 Section I comprises of 16 very short answer- type questions. Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to 							
	ttempt any 4 out of 5 MCQs.							
	Part – B:							
	. Question No 19 to 28 are Very short answer Type questions							
	. Question No 29 to 35 are Short Answer Type questions of 3 marks each							
3	3. Question No 36 to 38 are Long Answer Type questions of 5 marks each.							
PART A SECTION -I								
	All questions are compulsory. In case of internal choices attempt any one.							
1	a) Find the union of the following pair of sets :	(1)						
	$P = \{x : x \in N \text{ and } 1 < x \le 5\}, Q = \{x : x \in N \text{ and } 3 < x \le 7\}$							
	(A) $\{x \in N : 2 \le x \le 7\}$ (B) $\{x \in N : 1 < x \le 7\}$ (C) $\{x \in N : 1 \le x < 7\}$ (D) $\{x \in N : 2 \le x < 7\}$							
	$(c) \{x \in N : 1 \leq x < 7\}$ OR							
	b) Which one of the following is an empty set?							
	(A) $\{\phi\}$ (B) $\{x: x \text{ is even prime number }\}$							
	(C) $\{x: x \in R, and x^2 = -1\}$ (D) $\{x: x \in Z and -1 < x < 1\}$							
2	a) Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to P is	(1)						
	from A to B is(A)2 ^{mn} (B) $n^m - 1$ (C) $mn - 1$ (D) $2^{mn} - 1$							
	OR							
	b) Consider the function $y = f(x)$ given by $\{(x, y): x = 10y\}$, find the image of $x = 0.1$.							
	A)-10 (B) 0.01 (C) $\frac{1}{10}$ (D) 100							
2		(1)						
3	Find the real values of x and y, if $(1 - i)x + (1 + i)y = 1 - 3i$. (A) $x = 2, y = 1$ (B) $x = 2, y = -1$ (C) $x = -2, y = -1$ (D) $x = -2, y = 1$	(1)						
		(4)						
4	Solve for $x : \frac{5-2x}{3} \le \frac{x}{6} - 5$.	(1)						
	(A) $x \ge 8$ (B) $x \le 8$ (C) $x > 8$ (D) $x \ge 40$							
5	The value of $sin15^\circ = $	(1)						
	(A) $\frac{\sqrt{3}-1}{4}$ (B) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ (C) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (D) $\frac{\sqrt{3}-1}{\sqrt{2}}$							
	(11) 4 (D) $\frac{1}{2\sqrt{2}}$ (C) $\frac{1}{2\sqrt{2}}$ (D) $\frac{1}{\sqrt{2}}$							
6	Find the value of $tan720^{\circ} - sin270^{\circ} - sin150^{\circ} cos120^{\circ}$	(1)						
	(A) $-\frac{5}{4}$ (B) $\frac{5}{4}$ (C) $\frac{1}{4}$ (D) $\frac{3}{2}$							

a) Find the value of $sin^2 \frac{5\pi}{6} + cos^2 \frac{\pi}{3} - tan^2 \frac{\pi}{4}$ (A) $-\frac{1}{2}$ (B) 1 (C) $\frac{1}{2}$ (D) $-\frac{1}{4}$ 7 (1)OR b) If $sin\theta + cos\theta = 0$ and θ lies in the fourth quadrant, find $sec^2\theta$. (A) $\frac{1}{2}$ (C) 2 (D) 4 (B) 1 Simplify $z = i^{107} + i^{112} + i^{117} + i^{122}$, where $i = \sqrt{-1}$. 8 (1)(B) -1 (C) 0 (A) 1 (D) *i* If $\frac{1}{6!} + \frac{1}{7!} = \frac{k}{8!}$, find k. 9 (1)a) List all the elements of the set{ $x : x \in Z, |x| < 3$ }. 10 (1)b) Express the following set in roster form. $A = \left\{ x : x = \frac{n^2 - 1}{n^2 + 1}, n \in N \text{ and } n < 5 \right\}$ a) Let $A = \{-2, -1, 0, 1, 2\}$ and $B = \{0, 1, 3\}$ Find the subset of $A \times B$ corresponding to the 11 (1)relation R : x > y. OR b) Range of the function $f(x) = \frac{x}{x+2}$ is _____ How many three digit numbers can be formed without using the digits0, 3, 5, 7, 9. The repetition of 12 (1)digits is not allowed. Solve the in-equation: 5x - 3 < 7, when $x \in W$. 13 (1)

14 From the given arrow diagram, find whether the relation from A to B is a function or not? Justify.

- 15 Find the conjugate of $\frac{1}{3+4i}$ in the standard form.
- 16 If $4P_2 = n \times 4C_2$, find *n*.


SECTION -II

Both the Case study based questions are compulsory. Attempt any 4 sub parts from each question (17 and 18). Each question carries 1 mark.

17 *Azadi Ka Amrit Mahotsav* is an initiative of the Government of India to celebrate and commemorate 75 years of independence of **INDIA** and the glorious history of its people, culture and achievements. After the school programme, Mathematics teacher gave a task to the students of Class XI.

(1)

(1)

(1)

(1)

(A) DAIIN	(B) INDIA	(C) DIAIN	(D) DAINI	
iii) How many words car		(1)		
(A) 13	(B) 15	(C) 12	(D) 25	
iv) 49 th word will be				(1)
(A) NIADI	(B) NIDIA	(C) NAIDI	(D) NADII	
v) 60 th word will be				(1)
(A) NDIAI	(B) NIDIA	(C) NIIDA	(D) NDAII	

18.

In a survey of 100 students in a music school the number of students learning different music instruments was found to be: Guitar 28, Violin 30, Flute 42, Guitar and Violin 8, Guitar and Flute 10, Violin and Flute 5, all musical instruments 3. Based on the above information, answer the following.

	i) How many students were learning Guitar and Violin?						
	(A) 10	(B) 8	(C) 5	(D) 3			
	ii) How many student	? ie $n(A \cup B \cup C)$	(1)				
	(A) 20	(B) 100	(C) 80	(D) 70			
	iii) How many studen	ts were learning Guitar	only?		(1)		
	(A) 16	(B) 10	(C) 15	(D) 13			
iv) How many students were learning Flute only?							
	(A) 32	(B) 30	(C) 25	(D) 27			
v) How many students were not learning any of the instruments?							
	(A) 20	(B) 18	(C) 22	(D) 27			

PART B

All questions are compulsory. In case of internal choices attempt any one.

¹⁹ If
$$z_1 = 1 - i$$
 and $z_2 = -2 + 4i$ then find $im\left(\frac{z_1 z_2}{\overline{z_1}}\right)$ (2)

²⁰ If $R = \{(x, y): x, y \in N, y = \frac{1}{1+x}, x \text{ is odd natural number}\}$, write R in Roster form and find the (2) range of R.

a) Show that :
$$\frac{\sin 135^\circ - \cos 120^\circ}{\sin 135^\circ + \cos 120} = 3 + 2\sqrt{2}.$$

b) Prove that :
$$\cos\theta + \cos\left(\frac{2\pi}{3} + \theta\right) + \cos\left(\frac{4\pi}{3} + \theta\right) = 0$$

22 a) Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function from $Z \to Z$ defined by f(x) = ax + b, for some integers a, b. Determine a and b. OR

b) If
$$A = \{x : x \in W, x < 2\}, B = \{x : x \in N, 1 < x < 5\}, C = \{3, 5\}$$
 find
(i) $A \times (B \cap C)$ (ii) $A \times (B \cup C)$

23 The letters of the word HARYANA are arranged in a line, How many different arrangements are (2) possible? How many of these start with H and end with N?

- 24 If $U = \{1, 2, 3, 4, \dots, 12\}, A = \{x : x = 2n + 1, n \le 5, n \in N\}$ (2)and $B = \{x: x \text{ is a prime number }, 3 \le x \le 10\}$. Find A^c , B^c , $(A^c \cap B^c)$
- a) A and B are two sets such that n(A) = 4 and n(B) = 7. Find 25 (*i*) minimum value of $n (A \cup B)$ (*ii*) Maximum value of $n (A \cup B)$.

OR

(2)

(2)

(3)

b) If X and Y are two sets such that X has 50 elements, $X \cup Y$ has 70 elements and $X \cap Y$ has 15 elements. How many elements does Y has?

^{26.} Show that :
$$\frac{\sin 85^\circ + \sin 35^\circ}{\cos 85^\circ + \cos 35} = \sqrt{3}$$
 (2)

- Find the multiplicative inverse of $-1 + \sqrt{3}i$ in the x + iy form. 27
- Find the number of different 8-letter arrangements that can be made from the letters of the word 28. (2)DAUGHTER so that: (*i*) all vowels occur together. (*ii*) beginning with D and ending with R

²⁹ a) If
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = a + ib$$
. Find $a - b$. (3)

OR b) Show that: $(x + 1 + i)(x + 1 - i)(x - 1 + i)(x - 1 - i) = x^4 + 4$

³⁰ Prove that :
$$\left[1 + \cot\alpha - \sec\left(\frac{\pi}{2} + \alpha\right)\right] \left[1 + \cot\alpha + \sec\left(\frac{\pi}{2} + \alpha\right)\right] = 2 \cot\alpha$$
 (3)

31 a) Let
$$A = \{-2, -1, 0, 1, 2\}$$
 and $f: A \to Z$ given by $f(x) = x^2 - 2x - 3$. (3)
(i) Find the range of f

(ii) pre- images of 6, -3 and 5.

OR

b) If the function
$$f: R \to R$$
 defined by $f(x) = \begin{cases} x+2, x < 1 \\ 0, x = 1 \\ x-2, x > 1 \end{cases}$
Find the value of $\frac{f(3)-f(-3)+f(1)+f(\sqrt{2})}{f(0)}$.

Solve the system of in-equations: 3x - 7 < 5 + x, $11 - 5x \le 1$. 32 (3)

³³ Prove that :
$$\frac{\sin(\alpha+\beta)-2\sin\alpha+\sin(\alpha-\beta)}{\cos(\alpha+\beta)-2\cos\alpha+\cos(\alpha-\beta)} = tan\alpha.$$
 (3)

- How many of the natural numbers from 1 to 1000 have none of their digits repeated? 34
- 35 If $U = \{x: x \in Z \text{ and } -3 \le x \le 5\}$, $A = \{x: x \in W \text{ and } x^2 4x + 3 = 0\},\ B = \{x: x \in Z \text{ and } -1 < x \le 4\}$, $C = \{x: x \in Z \text{ and } x^2 \le 4\}.$ (3)Find i) $(A \cup B)^c$ ii) $(A \cup C)^c$ iii) $Verify (A \cup B)^c = A^c \cap B^c$
- a) Find the values of $sin\frac{x}{2}$, $cos\frac{x}{2}$ and $tan\frac{x}{2}$, if $sin x = -\frac{1}{2}$, where x lies in IVth quadrant. 36 (5)OR

If
$$cos\theta = \frac{-3}{5}$$
, when θ lies in the third quadrant, evaluate: $\frac{cosec\theta + cot\theta}{sec\theta - tan\theta}$

A committee of 12 is to be formed from 9 women and 8 men. In how many ways this can be done if at 37 (5)least five women have to be included in a committee? In how many of these committees (*i*) the women are in majority (*ii*) the men are in majority?

³⁸ If
$$f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) \right\}$$
 be a function from R into R. Determine the domain and range of f . (5)